The CORE Sequence: A Nanoscale Fluorocarbon-Free Silicon Plasma Etch Process Based on SF6/O2 Cycles with Excellent 3D Profile Control at Room Temperature

Abstract
This study focuses on the development of a fluorocarbon-free directional silicon etching process, called CORE (Clear, Oxidize, Remove, and Etch) in which a switching sequence of SF6 and O-2 is operated at room temperature. This distinguishes it from the old-fashioned room temperature and cryogenic mixed RIE processes as CORE enables a higher selectivity, creates pattern independency of etching profiles and works excellent at room temperature. The CORE process resembles the well-known SF6-based Bosch process, but the usual C4F8 inhibitor is replaced by O-2 oxidation with self-limiting characteristics. Therefore the CORE result is similar to Bosch, however has the advantage of preventing the pile-up of fluorocarbon deposits at the topside of deep-etched or nano-sized features. At the same time, process drift is minimized as the reactor wall is staying perfectly clean. The CORE process has shown an excellent performance in high aspect ratio (3D) nanoscale structures with an accurate and controllable etch rate between 1 and 50 nm min(-1) (and SiO2-selectivity of ca. 35) using the etch-tool in the RIE-mode. By adding the ICP source (DRIE-mode), a directional etch rate up to 1 mu m min(-1) (at 50 sccm SF6 flow) and selectivity >200 for SiO2 is possible. (C) 2020 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.