Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors

Abstract
Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ∼105 s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due to coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.
Funding Information
  • Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR (ITMS code 26240120011)
  • Seventh Framework Programme (287602)
  • Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (VEGA 2/0138/14)
  • Agentúra na Podporu Výskumu a Vývoja (APVV-0367-11)