Abstract
This paper presents a systematic methodology for solving the inverse dynamics of a Stewart-Gough manipulator. Based on the principle of virtual work and the concept of link Jacobian matrices, a methodology for deriving the dynamical equations of motion is developed. It is shown that the dynamics of the manipulator can be reduced to solving a system of six linear equations in six unknowns. A computational algorithm for solving the inverse dynamics of the manipulator is developed and several trajectories of the moving platform are simulated. [S1050-0472(00)00401-3]