Improved Endothelialization of Titanium Vascular Implants by Extracellular Matrix Secreted from Endothelial Cells

Abstract
A variety of metals have been widely used in construction of cardiovascular implants (CVIs), such as artificial heart valves, ventricular pumps, and vascular stents. Although great effects have been put into rigorous anticoagulation, late thrombosis still occurred due to inferior blood and cell compatibility. Natural endothelium is popularly regarded as the only substance that has long-term anticoagulant ability. So, establishment of a compact endothelial cell (EC) monolayer on CVIs surface is a guarantee for their long-term potency. In the work described here, titanium (Ti) disks were coated with extracellular matrix (ECM) directly secreted by human umbilical vein endothelial cells (HUVECs), so as to help ECs proliferate and migrate and to improve their endothelialization in vivo. Deposition of ECM on Ti disks was detected by immunofluorescence microscopy, diffuse reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The surface topography and wettability of the Ti disks significantly changed after ECM deposition. Most importantly, it was found that ECM deposition inhibited platelet adhesion, stimulated EC proliferation, increased EC migration speed in vitro, and eventually accelerated the re-cellularization speed of Ti disks in vivo. These important results render it reasonable and feasible to modify CVIs with ECM secreted from ECs for improving their long-term potency.

This publication has 42 references indexed in Scilit: