Endothelial Cell and Platelet Behavior on Titanium Modified with a Mutilayer of Polyelectrolytes

Abstract
Endothelial cell seeding, a promising method for improving the performance of vascular grafts, often requires immobilizing biological molecules on the surface of the substrate material. In this study, chitosan (CS) and sulfated chitosan (SCS) multilayers were coated on pure titanium using a layer-by-layer self-assembly technique. The CS—SCS multilayer growth was carried out by first depositing a single layer of positively charged poly(L-lysine) (PLL) on the NaOHtreated titanium substrate, followed by alternate deposition of negatively charged SCS and positively charged CS, and terminated by an outermost layer of SCS. Platelet-rich plasma (PRP) and endothelial cells were seeded on NaOH treated titanium and CS—SCS coated titanium samples, respectively, to evaluate the adhesion and activation of platelets and the behavior of endothelial cells in vitro. The multilayer processed surfaces displayed reduced platelet adhesion and activation, and promoted endothelial cell attachment and growth in vitro. This approach may be used for the fabrication of titanium-based vascular implant surfaces for endothelial promotion.