Liver iron and serum ferritin levels are misleading for estimating cardiac, pancreatic, splenic and total body iron load in thalassemia patients: factors influencing the heterogenic distribution of excess storage iron in organs as identified by MRI T2*

Abstract
A comparative assessment of excess storage iron distribution in the liver, heart, spleen and pancreas of β-thalassemia major (β-ΤΜ) patients has been carried out using magnetic resonance imaging (MRI) relaxation times T2*. The β-ΤΜ patients (8–40 years, 11 males, 9 females) had variable serum ferritin levels (394–5603 μg/L) and were treated with deferoxamine (n = 10), deferiprone (n = 5) and deferoxamine/deferiprone combination (n = 5). MRI T2* assessment revealed that excess iron is not proportionally distributed among the organs but is stored at different concentrations in each organ and the distribution is different for each β-ΤΜ patient. There is random variation in the distribution of excess storage iron from normal to severe levels in each organ among the β-ΤΜ patients by comparison to the same organs of ten normal volunteers. The correlation of serum ferritin with T2* was for spleen (r = –0.81), liver (r = −0.63), pancreas (r = −0.33) and none with heart. Similar trend was observed in the correlation of liver T2* with the T2* of spleen (r = 0.62), pancreas (r = 0.61) and none with heart. These studies contradict previous assumptions that serum ferritin and liver iron concentration is proportional to the total body iron stores in β-ΤΜ and especially cardiac iron load. The random variation in the concentration of iron in the organs of β-ΤΜ patients appears to be related to the chelation protocol, organ function, genetic, dietary, pharmacological and other factors. Monitoring of the iron load for all the organs is recommended for each β-ΤΜ patient.