Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors

Abstract
We utilize an organic polymer buffer layer between graphene and conventional gate dielectrics in top-gated graphene transistors. Unlike other insulators, this dielectric stack does not significantly degrade carrier mobility, allowing for high field-effect mobilities to be retained in top-gate operation. This is demonstrated in both two-point and four-point analysis and in the high-frequency operation of a graphene transistor. Temperature dependence of the carrier mobility suggests that phonons are the dominant scatterers in these devices.