Pore Characteristics of Chitosan Scaffolds Studied by Electrochemical Impedance Spectroscopy

Abstract
In this study, a novel approach, electrochemical impedance spectroscopy (EIS), was used to examine the pore characteristics of chitosan scaffolds under aqueous conditions. The EIS was run with a constant current of 0.1 mA with the frequency sweep of 106 to 10−4 Hz. The resulting complex impedance measurement was then used to calculate porosity, which was determined to be 71%. Scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), two commonly used methods for scaffold characterization, were used to independently evaluate the pore characteristics and compare with that of EIS. The SEM and MIP were performed and analyzed under standard conditions. The pore diameter values found by SEM and MIP are 107 μm and 82 μm, respectively, indicating that both the image-based (SEM) and pressure-based (MIP) analyses provide similar results. The porosity of 73% calculated by MIP is comparable to that of EIS. From these results, it can be suggested that EIS, a relatively nondestructive test, is able to obtain comparable data on pore characteristics, as compared to SEM and MIP. The advantage of the EIS as an nondestructive test is that it can be performed under physiologically relevant conditions, whereas SEM and MIP require dry samples and vacuum conditions for measurement. These benefits make EIS a viable option for the characterization and long-term observation of tissue-engineered scaffolds.