Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation in vitro

Abstract
Rabbit forelimb tendons incubated for 15 or 21 days at 35 degrees C in the presence of 8 or 24 mg of glucose/ml were shown to change their chemical, biochemical and mechanical characteristics. The tendons treated with glucose contained up to three times as much hexosyl-lysine and hexosylhydroxylysine as did control tendons as judged by assay of NaB3H4-reduced samples. Measurement of the force generated on thermal contraction showed significant increases in glycosylated tendons compared with controls, indicating the formation of new covalent stabilizing bonds. This conclusion was supported by the decreased solubility of intact tendons and re-formed fibres glycosylated in vitro, and by the evidence from peptide maps of CNBr-digested glucose-incubated tendons. The latter, when compared with peptide maps of control tendons, revealed the presence of additional high-Mr peptide material. These peptides appear to be cross-linked by a new type of covalent bond stable to mild thermal and chemical treatment. This system in vitro provides a readily controlled model for the study of the chemistry of changes brought about in collagen by non-enzymic glycosylation in diabetes.