Measurement of nanopatterned surfaces by real and reciprocal space techniques

Abstract
A newly developed laboratory grazing-incidence small-angle X-ray scattering GISAXS system capable of statistical measurements of surface morphology at the nanometer scale was developed. The potential of the GISAXS system is compared to the AFM technique for a nanopatterned silicon surface produced by ion-beam erosion. The characteristic period of the ion-beam induced ripples and their lateral correlation length were estimated from AFM. Using GISAXS the reciprocal space map of surface morphology was measured and analyzed. The two microfocus X-ray sources emitting radiation at the Cu-K-alpha and Cr-K-alpha were used. The lateral periods of ripples obtained by the reciprocal space mapping techniques match the results of real space techniques. The setup has the potential to monitor and control the deposition process and formation of nanostructures with sufficient temporal and spatial resolution.