Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans

Abstract
We compare two geometries of sources and detectors for optimizing the diffuse optical imaging resolution of brain activation in humans. Because of limitations in the instruments’ dynamic range, most diffuse optical brain activation images have used only nonoverlapping measurements. We demonstrate theoretically and with a human experiment that a simple geometry of sources and detectors can provide overlapping measurements within the limitation of instrumentation dynamic range and produce an image resolution and localization accuracy that is twofold better.