Computer simulations of crystallization kinetics in amorphous silicon under pressure

Abstract
With the help of computer simulations we have studied the crystallization kinetics of amorphous silicon in solid phase epitaxial (SPE) and random nucleationgrowth processes. Our simulations employing classical molecular dynamics and first principles methods suggest qualitatively similar behavior in both processes. Pressure is found to reduce the difference in molar volumes and coordination numbers between the amorphous and crystalline phases, which in turn lowers the energy barrier of crystallization. The activation energy for the SPE growth of four coordinated diamond phase is found to reach a minimum (a maximum in growth rates) close to 10 GPa when its density becomes equal to that of the amorphous phase. The crystallization temperatures of successive high pressure phases of silicon are found to decrease, offering a possible explanation for the pressure induced crystallization reported in this material.