Effects of strain hardenability and strain-rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing

Abstract
The effects of strain hardenability and strain rate sensitivity on the plastic flow and deformation inhomogeneity during equal channel angular pressing were studied using a finite element method analysis. In this study, perfect plastic nonhardening and rate-insensitive materials, and rate-sensitive materials were considered. In case of the nonhardening and rate-insensitive materials, the deformed geometry was predicted to be quite uniform and homogeneous. Deformation inhomogeneity developed, however, in materials with finite work-hardening exponent and strain-rate sensitivity. The corner gap formed in strain-hardening materials whereas the upper and lower channel gaps formed in strain-rate-sensitive materials. The deformation inhomogeneity was strongly dependent on the relative effects of strain-hardening exponent and strain-rate sensitivity. The predictions on the deformation inhomogeneity and the formation of corner and channel gaps were compatible with the experimental data published in the literature.