Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations

Abstract
The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ∼12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2 bonding along the tracks with the hillocks containing almost no sp3 contribution.