Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α

Top Cited Papers
Open Access
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) have so far failed to live up to their potential as a treatment for the repair of large bone defects. Songtao Shi and his colleagues now show that this may be due to their apoptosis mediated by resident T cells in the wound as a result of excess IFN-γ and TNF-α signaling. They show that reducing the levels of these cytokines, including through the local administration of aspirin, markedly increases the survival of implanted BMMSCs and improves bone wound healing in a mouse model. Stem cell–based regenerative medicine is a promising approach in tissue reconstruction. Here we show that proinflammatory T cells inhibit the ability of exogenously added bone marrow mesenchymal stem cells (BMMSCs) to mediate bone repair. This inhibition is due to interferon γ (IFN-γ)–induced downregulation of the runt-related transcription factor 2 (Runx-2) pathway and enhancement of tumor necrosis factor α (TNF-α) signaling in the stem cells. We also found that, through inhibition of nuclear factor κB (NF-κB), TNF-α converts the signaling of the IFN-γ–activated, nonapoptotic form of TNF receptor superfamily member 6 (Fas) in BMMSCs to a caspase 3– and caspase 8–associated proapoptotic cascade, resulting in the apoptosis of these cells. Conversely, reduction of IFN-γ and TNF-α concentrations by systemic infusion of Foxp3+ regulatory T cells, or by local administration of aspirin, markedly improved BMMSC-based bone regeneration and calvarial defect repair in C57BL/6 mice. These data collectively show a previously unrecognized role of recipient T cells in BMMSC-based tissue engineering.