Salmonella enterica Replication in Hemophagocytic Macrophages Requires Two Type Three Secretion Systems

Abstract
Salmonella enterica serotype Typhimurium is a natural pathogen of mice, which acquire the bacteria orally and develop systemic acute infections that can become subacute to chronic infections. S. Typhimurium can reside within hemophagocytic macrophages (HMs) in SV129S6 mice, an Slc11a1/Nramp1 +/+ inbred strain. HMs are activated macrophages which have ingested viable hematopoietic cells and are a key characteristic of infectious and inflammatory diseases. Here we show that modest S. Typhimurium replication in HMs begins at 18 h postinfection, while activated macrophages kill the bacteria. For bacterial replication to occur, the phagocytosed viable cells must be grown to a low cell density and the multiplicity of infection must be low. HMs are able to kill phagocytosed Escherichia coli , produce reactive nitrogen species, and retain S. Typhimurium within membrane-bound vesicles. S. Typhimurium does not rescue E. coli upon coinfection of HMs. This indicates that S. Typhimurium does not cause HMs to become permissive for other microbes; rather, S. Typhimurium is especially equipped to survive within HMs. Two type three secretion systems (T3SS) encoded by S. Typhimurium are required for replication within HMs. While the T3SS within Salmonella pathogenicity island 2 (SPI-2) has been previously shown to be important for bacterial survival in cells, a role for SPI-1 in replication in macrophages has not been reported. The requirement for SPI-1 in HMs may help explain the role of SPI-1 during long-term colonization of mice.