Submilliwatt, ultrafast and broadband electro-optic silicon switches.

Abstract
We present a broadband 2x2 electro-optic silicon switch with an ultralow switching power and fast switching time based on a Mach-Zehnder interferometer (MZI). Forward-biased p-i-n junctions are employed to tune the phase of silicon waveguides in the MZI, to achieve a π-phase switching power of 0.6 mW with a drive voltage 0.83 V with a MZI arm length of 4 mm. The 10%-90% switching time is demonstrated to be 6 ns. Optical crosstalk levels lower than −17 dB are obtained for an optical bandwidth of 60 nm. The free carrier induced silicon refractive index change is extracted from the experimental results for the concentration range from 1016 to 1017 cm−3. We find that at the concentration of 1016 cm−3, the index change is about twice that calculated by the commonly used index change equation.