Astrocyte cell lineage. III. The morphology of differentiating mouse astrocytes in colony culture

Abstract
Disaggregated cells of newborn DBA/1J mouse neopallium were grown in colony cultures, and colonies of cells at various stages of differentiation along the astrocyte cell lineage were examined after 3 days, 1, 2 and 4 weeks by electron microscopy and by NBD-phallacidin which demonstrates the distribution of microfilaments. The earliest astrocyte precursor cells or glioblasts are closely apposed epithelial cells that rarely have junctions. Their scanty cytoplasm contains many free ribosomes but few microfilaments. The cells in the next stages of astrocyte lineage or proastroblasts are flat and are separated from each other to a variable degree. They have intercellular junctions associated with microfilaments and contain singly dispersed intermediate filaments. The proastroblasts gradually differentiate into astroblasts which have a similar morphology except that in addition to the singly distributed intermediate filaments they also contain intermediate filaments arranged into bundles of various sizes. The mature fibrous astrocytes have well-defined processes and distinct perikarya. They form from astroblasts in culture and also contain numerous bundles of intermediate filaments. The dibutyryl-cyclic AMP (dBcAMP)-induced astrocytes in culture in contrast are large stellate cells similar to reactive astrocytes found around sites of injury in the brain. On the basis of these and previous immunocytochemical studies of the formation and distribution of intermediate filaments in the cytoplasm of differentiating astrocytes, criteria are proposed for identification of different cells along the astrocyte lineage.