New Races and Novel Strains of the Spinach Downy Mildew Pathogen Peronospora effusa

Abstract
Downy mildew disease, caused by Peronospora effusa (=P. farinosa f. sp. spinaciae [Pfs]), is the most economically important disease of spinach. Current high-density fresh-market spinach production provides conducive conditions for disease development, and downy mildew frequently forces growers to harvest early owing to disease development, to cull symptomatic leaves prior to harvest, or to abandon the field if the disease is too severe. The use of resistant cultivars to manage downy mildew, particularly on increasing acreages of organic spinach production, applies strong selection pressure on the pathogen, and many new races of Pfs have been identified in recent years in spinach production areas worldwide. To monitor the virulence diversity in the Pfs population, downy mildew samples were collected from spinach production areas and tested for race identification based on the disease reactions of a standard set of international spinach differentials. Two new races (designated races 15 and 16) and eight novel strains were identified between 2013 and 2017. The disease reaction of Pfs 15 was similar to race 4, except race 4 could not overcome the resistance imparted by the RPF9 locus. Several resistance loci (RPF1, 2, 4, and 6) were effective in preventing disease caused by Pfs 15. The race Pfs 16 could overcome several resistance loci (RPF2, 4, 5, 9, and 10) but not others (RPF1, 3, 6, and 7). One novel strain (UA1014) could overcome the resistance of spinach resistant loci RPF1 to RPF7 but only infected the cotyledons and not the true leaves of certain cultivars. A new set of near-isogenic lines has been developed and evaluated for disease reactions to the new races and novel strains as differentials. None of the 360 U.S. Department of Agriculture spinach germplasm accessions tested were resistant to Pfs 16 or UA1014. A survey of isolates over several years highlighted the dynamic nature of the virulence diversity of the Pfs population. Identification of virulence diversity and evaluation of the genetics of resistance to Pfs will continue to allow for a more effective disease management strategy through resistance gene deployment.

This publication has 16 references indexed in Scilit: