Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype

Abstract
Restoring natural walking for amputees has been increasingly investigated because of demographic evolution, leading to increased number of amputations, and increasing demand for independence. The energetic disadvantages of passive pros-theses are clear, and active prostheses are limited in autonomy. This paper presents the simulation, design and development of an actuated knee-ankle prosthesis based on a variable stiffness actuator with energy transfer from the knee to the ankle. This approach allows a good approximation of the joint torques and the kinematics of the human gait cycle while maintaining compliant joints and reducing energy consumption during level walking. This first prototype consists of a passive knee and an active ankle, which are energetically coupled to reduce the power consumption.