A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment

Abstract
The free radical scavenging activity of Trolox was studied for aqueous and lipid environments using the Density Functional Theory. Several reaction mechanisms and free radicals of different chemical nature have been included in this study, as well as the influence of the pH. Trolox was found to be a powerful ˙OH and alkoxy scavenger, regardless of the conditions under which the reaction takes place. It was also found to be very efficient as a peroxy radical scavenger in aqueous solution, while its protective effects against this particular kind of free radicals are significantly reduced in lipid solution. Four reaction mechanisms were found to significantly contribute to the ˙OH scavenging activity of Trolox in aqueous solution: hydrogen transfer (HT), radical adduct formation (RAF), single electron transfer (SET), and sequential proton loss electron transfer (SPLET), while in lipid media two of them are relevant: HT and RAF. The ˙OCH3, ˙OOH, and ˙OOCHCH2 scavenging processes are predicted to take place almost exclusively by HT from the phenolic OH group in lipid media, and in aqueous solution at pH < 11, while at higher pH values the SPLET mechanism is proposed as the main one. This is also the case for other non-halogenated alkyl or alkenyl peroxy (and alkoxy) radicals. The agreement with the available experimental data supports the reliability of the presented calculations.

This publication has 59 references indexed in Scilit: