Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles

Abstract
This paper gives an overview of the Lucy project. What is special is that the biped is not actuated with the classical electrical drives, but with pleated pneumatic artificial muscles. In an antagonistic setup of such muscles both the torque and the compliance are controllable. From human walking there is evidence that joint compliance plays an important role in energy-efficient walking and running. To be able to walk at different walking speeds and step lengths, a trajectory generator and joint trajectory tracking controller are combined. The first generates dynamically stable trajectories based on the objective locomotion parameters which can be changed from step to step. The joint trajectory tracking unit controls the pressure inside the muscles so the desired motion is followed. It is based on a computed torque model and takes the torque–angle relation of the antagonistic muscle setup into account. With this strategy the robot is able to walk at a speed up to 0.15 m/s. A compliance controller is developed to reduce the energy consumption by combining active trajectory control with the exploitation of the natural dynamics. A mathematical formulation was developed to find an optimal compliance setting depending on the desired trajectory and physical properties of the system. This strategy is experimentally evaluated on a single pendulum structure and not implemented on the real robot because the walking speed of the robot is currently too slow. At the end a discussion is given about the pros and cons of building a pneumatic biped, and the control architecture used.