Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications

Abstract
Chitosan films incorporated with thyme oil for potential applications of wound dressing were successfully prepared by solvent casting method. The water vapor permeability, oxygen transmission rate, and mechanical properties of the films were determined. Surface and cross-section morphologies and the film thicknesses were determined by Scanning Electron Microscopy (SEM). Fourier transform infrared (FT-IR) spectroscopy was conducted to determine functional group interactions between the chitosan and thyme oil. Thermal behaviors of the films were analyzed by Thermal Gravimetry (TGA) and Differential Scanning Calorimetry (DSC). In addition, the antimicrobial and the antioxidant activities of the films were investigated. The antimicrobial test was carried by agar diffusion method and the growth inhibition effects of the films including different amount of thyme oil were tested on the gram negative microorganisms of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and a gram positive microorganism of Staphylococcus aureus. The minimum thyme oil concentration in chitosan films showing the antimicrobial activity on all microorganisms used in the study was found as 1.2 % (v/v). In addition, this concentration showed the highest antioxidant activity due to mainly the carvacrol in thyme oil. Water vapor permeability and oxygen transmission rate of the films slightly increased, however, mechanical properties decreased with thyme oil incorporation. The results revealed that the thyme oil has a good potential to be incorporated into chitosan to make antibacterial and permeable films for wound healing applications.