Switching dynamics of spatial solitary wave pixels

Abstract
Separatrices and scaling laws in the switching dynamics of spatial solitary wave pixels are investigated. We show that the dynamics in the full model are similar to those in the plane-wave limit. Switching features may be indicated and explained by the motion of the (complex) solitary wave amplitude in the phase plane. We report generalization, into the domain of transverse effects, of the pulse area theorem for the switching process and a logarithmic law for the transient dynamics. We also consider, for what is the first time to our knowledge, phase-encoded address of solitary pixels and find that a near-square-wave temporal switching pattern is permitted without (transverse) cross switching.