Solitary waves as fixed points of infinite-dimensional maps for an optical bistable ring cavity: Analysis

Abstract
The transverse behavior of a laser beam propagating through a bistable optical cavity is investigated analytically and numerically. Numerical experiments that study the (one-dimensional) transverse structure of the steady state profile are described. Mathematical descriptions of (i) an infinite-dimensional map that models the situation, (ii) the solitary waves that represent the transverse steady state structures, (iii) a projection formalism that reduces the infinite-dimensional map to a finite-dimensional one, and (iv) the theoretical analysis of this reduced map are presented in detail. The accuracy of this theoretical analysis is established by comparing its predictions to numerical observations.