Abstract
This paper describes the design and implementation of fully integrated rectifiers in BiCMOS and standard CMOS technologies for rectifying an externally generated RF carrier signal in inductively powered wireless devices, such as biomedical implants, radio-frequency identification (RFID) tags, and smartcards to generate an on-chip dc supply. Various full-wave rectifier topologies and low-power circuit design techniques are employed to decrease substrate leakage current and parasitic components, reduce the possibility of latch-up, and improve power transmission efficiency and high-frequency performance of the rectifier block. These circuits are used in wireless neural stimulating microsystems, fabricated in two processes: the University of Michigan's 3-/spl mu/m 1M/2P N-epi BiCMOS, and the AMI 1.5-/spl mu/m 2M/2P N-well standard CMOS. The rectifier areas are 0.12-0.48 mm/sup 2/ in the above processes and they are capable of delivering >25mW from a receiver coil to the implant circuitry. The performance of these integrated rectifiers has been tested and compared, using carrier signals in 0.1-10-MHz range.

This publication has 19 references indexed in Scilit: