IFN-γ- and TNF-Independent Vitamin D-Inducible Human Suppression of Mycobacteria: The Role of Cathelicidin LL-37

Abstract
Vitamin D deficiency is associated with susceptibility to tuberculosis, and its biologically active metabolite, 1α,25 dihydroxyvitamin D3 (1α,25(OH)2D3), has pleiotropic immune effects. The mechanisms by which 1α,25(OH)2D3 protects against tuberculosis are incompletely understood. 1α,25(OH)2D3 reduced the growth of mycobacteria in infected human PBMC cultures in a dose-dependent fashion. Coculture with agonists or antagonists of the membrane or nuclear vitamin D receptors indicated that these effects were primarily mediated by the nuclear vitamin D receptors. 1α,25(OH)2D3 reduced transcription and secretion of protective IFN-γ, IL-12p40, and TNF in infected PBMC and macrophages, indicating that 1α,25(OH)2D3 does not mediate protection via these cytokines. Although NOS2A was up-regulated by 1α,25(OH)2D3, inhibition of NO formation marginally affected the suppressive effect of 1α,25(OH)2D3 on bacillus Calmette Guérin in infected cells. By contrast, 1α,25(OH)2D3 strongly up-regulated the cathelicidin hCAP-18 gene, and some hCAP-18 polypeptide colocalized with CD14 in 1α,25(OH)2D3 stimulated PBMC, although no detectable LL-37 peptide was found in supernatants from similar 1α,25(OH)2D3-stimulated PBMC cultures. A total of 200 μg/ml of the active peptide LL-37, in turn, reduced the growth of Mycobacterium tuberculosis in culture by 75.7%. These findings suggest that vitamin D contributes to protection against TB by “nonclassical” mechanisms that include the induction of antimicrobial peptides.