Typhoid Fever and Its Association with Environmental Factors in the Dhaka Metropolitan Area of Bangladesh: A Spatial and Time-Series Approach

Top Cited Papers
Open Access
Abstract
Typhoid fever is a major cause of death worldwide with a major part of the disease burden in developing regions such as the Indian sub-continent. Bangladesh is part of this highly endemic region, yet little is known about the spatial and temporal distribution of the disease at a regional scale. This research used a Geographic Information System to explore, spatially and temporally, the prevalence of typhoid in Dhaka Metropolitan Area (DMA) of Bangladesh over the period 2005–9. This paper provides the first study of the spatio-temporal epidemiology of typhoid for this region. The aims of the study were: (i) to analyse the epidemiology of cases from 2005 to 2009; (ii) to identify spatial patterns of infection based on two spatial hypotheses; and (iii) to determine the hydro-climatological factors associated with typhoid prevalence. Case occurrences data were collected from 11 major hospitals in DMA, geocoded to census tract level, and used in a spatio-temporal analysis with a range of demographic, environmental and meteorological variables. Analyses revealed distinct seasonality as well as age and gender differences, with males and very young children being disproportionately infected. The male-female ratio of typhoid cases was found to be 1.36, and the median age of the cases was 14 years. Typhoid incidence was higher in male population than female (χ2 = 5.88, p0.05). A statistically significant inverse association was found between typhoid incidence and distance to major waterbodies. Spatial pattern analysis showed that there was a significant clustering of typhoid distribution in the study area. Moran's I was highest (0.879; p<0.01) in 2008 and lowest (0.075; p<0.05) in 2009. Incidence rates were found to form three large, multi-centred, spatial clusters with no significant difference between urban and rural rates. Temporally, typhoid incidence was seen to increase with temperature, rainfall and river level at time lags ranging from three to five weeks. For example, for a 0.1 metre rise in river levels, the number of typhoid cases increased by 4.6% (95% CI: 2.4–2.8) above the threshold of 4.0 metres (95% CI: 2.4–4.3). On the other hand, with a 1°C rise in temperature, the number of typhoid cases could increase by 14.2% (95% CI: 4.4–25.0). This research studies the spatial and temporal distribution of typhoid infections in the Dhaka metropolitan area of Bangladesh in the period 2005 to 2009. Data from hospital admission records was analysed together with a range of demographic, environmental and climatic data, in what is believed to be the first study of this nature; clear periodicity was found in the timing of case occurrences, with most cases occurring in the monsoon season. Men and very young children appear to be at greatest risk of contracting the disease. Closeness to rivers was also found to be a contributor to increased typhoid risk. While a difference in rates between urban and rural locations suggested by other studies was not found, distinct clustering of the disease was uncovered. Two of these clusters are located in central Dhaka with a third in the north of the metropolitan area.