Stimulation of specific GTP binding and hydrolysis activities in lymphocyte membrane by interleukin-2

Abstract
Interleukin-2 (IL-2) is a polypeptide growth factor which stimulates the proliferation and differentiation of T lymphocytes. The receptor for IL-2 is expressed on activated T lymphocytes, cloned IL-2 dependent cells and several other cell types. Analysis of the primary structure and of immune-precipitated receptor suggests that this molecule has no intrinsic signal transduction function, unlike other growth factors. IL-2 interaction with a high affinity receptor has been shown, however, to activate the calcium/phospholipid-dependent protein kinase C (PK-C) presumably via phosphoinositide hydrolysis. Members of a family of closely related guanine nucleotide binding proteins (G proteins) regulate a diverse group of metabolic events. Two of them, Gs and Gi, stimulate and inhibit adenylate cyclase activity respectively, and other G proteins are involved in diverse signal transduction system. Another member, Go, has no known function and activation of phospholipase C has been attributed to the action of an unidentified G protein, Gp. Since it has been observed that IL-2 inhibits the catalytic activity of adenylate cyclase and that agents such as PGE2 which stimulate adenylate cyclase activity inhibit the lymphoproliferative response to IL-2, association of GTP binding proteins with IL-2 signal transduction was investigated. In this report we describe for the first time the participation of a GTP binding protein in the action of a polypeptide growth factor, interleukin-2.