Experience is required for the maintenance and refinement of FM sweep selectivity in the developing auditory cortex

Abstract
Frequency modulated (FM) sweeps are common components of vocalizations, including human speech. How developmental experience shapes neuronal selectivity for these important signals is not well understood. Here, we show that altered developmental experience with FM sweeps used in echolocation by the pallid bat leads to either a loss of sideband inhibition or millisecond delays in the timing of inhibitory inputs, both of which lead to a reduction in rate and direction selectivity in auditory cortex. FM rate selectivity develops in an experience-independent manner, but requires experience for subsequent maintenance. Direction selectivity depends on experience for both development and maintenance. Rate and direction selectivity are affected by experience over different time periods during development. Altered inhibition may be a general mechanism of experience-dependent plasticity of selectivity for vocalizations.