Site‐selective cyclic AMP analogs provide a new approach in the control of cancer cell growth

Abstract
Site-selective cyclic AMP analogs bind to site 1 or site 2 of the known cAMP-binding sites depending on the position of substituents on the purine ring, either at C-2 and C-8 (site 1) or at C-6 (site 2). The growth inhibitory effect of such site-selective cAMP analogs used in this investigation with 15 human cancer cell lines surpassed that of analogs previously tested. The most potent analogs were 8-chloro, N 6-benzyl and N 6-phenyl-8-p-chlorophenylthio-cAMP. The combination of a C-8 with an N 6 analog had synergistic effects. The 24 site-selective analogs tested produced growth inhibition ranging from 30 to 80% at micromolar concentrations with no sign of toxic effects. Growth inhibition was not due to a block in a specific phase of the cell cycle but paralleled a change in cell morphology, an increase of the RII cAMP receptor protein and a decrease of p21 ras protein. Since the adenosine counterpart of the 8-chloro analog produced G1 synchronization without affecting the RII and p21 ras protein levels, it is unlikely that an adenosine metabolite is involved in the analog effect. Site-selective cAMP analogs thus provide a new biological tool for control of cancer growth.