A Survey of Control Issues in Nanopositioning

Abstract
Nanotechnology is the science of understanding matter and the control of matter at dimensions of 100 nm or less. Encompassing nanoscale science, engineering, and technology, nanotechnology involves imaging, measuring, modeling, and manipulation of matter at this level of precision. An important aspect of research in nanotechnology involves precision control and manipulation of devices and materials at a nanoscale, i.e., nanopositioning. Nanopositioners are precision mechatronic systems designed to move objects over a small range with a resolution down to a fraction of an atomic diameter. The desired attributes of a nanopositioner are extremely high resolution, accuracy, stability, and fast response. The key to successful nanopositioning is accurate position sensing and feedback control of the motion. This paper presents an overview of nanopositioning technologies and devices emphasizing the key role of advanced control techniques in improving precision, accuracy, and speed of operation of these systems.