Fractal Kelvin–Helmholtz breakups

Abstract
The Kelvin–Helmholtz billow developing in an infinite-\ud Schmidt number mixing layer at Re=1500 between two density-contrasted fluids experiences a two-dimensional shear instability. Secondary Kelvin–Helmholtz billows are seen to emerge on the light side of the primary structure, and then are advected towards the core of the main billow as the wave overturns. Due to the inertial baroclinic vorticity production, the braid region turns into a sharp vorticity ridge holding high shear levels and is thus sensitized to the Kelvin–Helmholtz instability. We carry out numerical simulations of the temporal development of the secondary mode when the flow is seeded at t=18 with the perturbation obtained from a linear stability analysis of the primary billow

This publication has 2 references indexed in Scilit: