Determination of parameters for a multiple-source model of megavoltage photon beams using optimization methods

Abstract
Accurate modelling of the radiation output of a medical linear accelerator is important for radiotherapy treatment planning. The major challenge is the adjustment of the model to a specific treatment unit. One approach is to use a multiple-source model containing a set of physical parameters. In this work, the parameters were derived from standard beam data measurements using optimization methods. The source model used includes sub-sources for bremsstrahlung radiation from the target, extra-focal photon radiation and electron contamination. The cost function includes a gamma error measure between measurements and current dose calculations. The procedure was applied to six beam data sets (6 MV to 23 MV) measured with accelerators from three vendors, but the results focus primarily on Varian accelerators. The obtained average gamma error (1%, 1 mm) between dose calculations and measurements used in optimization was smaller than 0.7 for each studied treatment beam and field size, and a minimum of 83% of measurement points passed the gamma < 1 criterion. For experiments made at different SSDs and for asymmetric fields, the average gamma errors were smaller than 1.1. For irregularly shaped MLC apertures, the differences in point doses were smaller than 1.0%. This work demonstrates that the source model parameters can be automatically derived from simple measurements using optimization methods. The developed procedure is applicable to a wide range of accelerators, and has an acceptable accuracy and processing time.