Abstract
We have evaluated the surface free energies of hydrogen-covered (100), (111), and (110) surfaces of diamond and silicon as a function of the hydrogen chemical potential using first-principles methods. The change in surface-energy anisotropy and equilibrium crystal shape due to hydrogen adsorption is examined. The three low-index facets are affected differently by the presence of hydrogen and unexpected differences are found between diamond and silicon. Taking into account possible formation of local facets on the hydrogen-covered (100) surfaces, we find that the dihydride phase is not stable on both C(100) and Si(100), nor is the 3×1 phase on C(100).