Mechanisms of fibrosis: therapeutic translation for fibrotic disease

Abstract
Fibrosis is a key aspect of many chronic inflammatory diseases and can affect almost every tissue in the body. This review discusses recent advances in our understanding of the mechanisms of fibrosis, focusing on the innate and adaptive immune responses. It also describes how some of these crucial pathogenic pathways are being therapeutically targeted in the clinic. Fibrosis is a key aspect of many chronic inflammatory diseases and can affect almost every tissue in the body. This review discusses recent advances in our understanding of the mechanisms of fibrosis, focusing on the innate and adaptive immune responses. It also describes how some of these crucial pathogenic pathways are being therapeutically targeted in the clinic. Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix–producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.