Simulation and Control of an Active Tilting-Pad Journal Bearing

Abstract
This study developed an active tilting-pad journal bearing with a feedback control system to regulate the orbit of a rotating shaft. The control is implemented by means of linear actuators installed behind the pivot of each pad, which allow the radial motion of the pads in real time. The control design uses the linear feedback of the state variables of the bearing-rotor system, with the feedback gains determined by the optimization of a quadratic performance index. The optimization is based on a linear spring-mass model that incorporates the direct stiffness and damping elements associated with each of the bearing pads. This linear model is found by the simulation of the system under small perturbations using a nonlinear Reynolds equation model. The nonlinear model is capable of simulating the radial motions of the pads by the actuators and is used to verify the effectiveness of the feedback control. It is shown that certain design parameters in the quadratic performance index may be used to determine both the stiffness and the damping of the closed-loop bearing system and that the shaft orbit can be thereby suitably regulated.