Abstract
This paper gives a theoretical and experimental contribution to the problem of active modification of the dynamic coefficients of tilting-pad journal bearings, aiming to increase the damping and stability of rotating systems. The theoretical studies for the calculation of the bearing coefficients are based on the fluid dynamics, specifically on the Reynolds equation, on the dynamics of multibody systems and on some concepts of the hydraulics. The experiments are carried out by means of a test rig specially designed for this investigation. The four pads of such a bearing are mounted on four flexible hydraulic chambers which are connected to a proportional valve. The chamber pressures are changed by means of the proportional valve, resulting in a displacement of the pads and a modification of the bearing gap. By changing the gap, one can adjust the dynamic coefficients of the bearing. With help of an experimental procedure for identifying the bearing coefficients, theoretical and experimental results are compared and discussed. The advantages and the limitation of such hydrodynamic bearings in their controllable form are evaluated with regard to application on the high-speed machines.