The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on 3T3‐L1 fibroblasts

Abstract
The cell-material interaction of 3T3-L1 fibroblasts with TiN films was studied in vitro. TiN films were deposited onto glass substrates to thicknesses of 0.2 and 1.0 μm by pulsed dc reactive magnetron sputtering. For comparison TiN films were deposited by closed field unbalanced magnetron sputter ion plating by Teer Coatings Ltd. (Hartlebury, UK) to result in TiN films with similar surface chemistries but having increased topographical features. TiN films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The cell-material interaction was examined morphologically by monitoring fibroblast attachment and growth and comparing to a control substrate. At early time points increased numbers of 3T3-L1 fibroblasts were found to preferentially attach to TiN films with an increase in the percentage of surface interstitial nitrogen and also with decreased topographical features. At later time points the presence of nanotopography appeared to play a greater role than the effects of surface chemistry and resulted in increased numbers of attached 3T3-L1 fibroblasts. The results show that by changing the deposition route and parameters to produce TiN films, the resultant films can be used to investigate the cellular response to surfaces of differing chemistry and topography. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 138–147, 2003