An Artificial Mitochondrial Tail Signal/Anchor Sequence Confirms a Requirement for Moderate Hydrophobicity for Targeting

Abstract
Tail-anchored proteins are a group of membrane proteins oriented with their amino terminus in the cytoplasm and their carboxy terminus embedded in intracellular membranes. This group includes the apoptosis-mediating proteins of the Bcl-2 family as well as the vesicle targeting proteins of the SNARE group, among others. A stretch of hydrophobic amino acids at the extreme carboxy terminus of these proteins serves both as a membrane anchor and as a targeting signal. Tail-anchored proteins are differentially targeted to either the endoplasmic reticulum or the mitochondrial outer membrane and the mechanism which accomplishes this selective targeting is poorly understood. Here we define important characteristics of the signal/anchor region which directs proteins to the mitochondrial outer membrane. We have created an artificial sequence consisting of a stretch of 16 leucines bounded by positively charged amino acids. Using this template we demonstrate that moderate hydrophobicity distinguishes the mitochondrial tail-anchor sequence from that of the endoplasmic reticulum tail-anchor sequence. A change as small as introduction of a single polar residue into a sequence that otherwise targets to the endoplasmic reticulum can substantially switch targeting to the mitochondrial outer membrane. Further we show that a mitochondrially targeted tail-anchor has a higher propensity for the formation of alpha-helical structure than a sequence directing tail-anchored proteins to the endoplasmic reticulum.