Abstract
Metabolic bone disease occurs when there is a net loss in bone density. Osteoporosis, the most common metabolic bone disease, is a devastating problem and an increasingly major public health issue. A substantial body of evidence in the elderly population indicates that a relationship exists between the components of body weight and various measures of bone/mass, density, and function. Both muscle and fat contribute to the body’s total weight and the intimate associations of muscle, fat, and bone are known. But the close functional interactions between muscle and bone or fat and bone are largely unidentified and have drawn much attention in recent years. Each of these tissues not only responds to afferent signals from traditional hormone systems and the central nervous systems but also secretes factors with important endocrine functions. Studies suggest that during growth, development, and aging, the relationship of muscle and fat with the skeleton possibly governs bone homeostasis and turnover. A better understanding of the endocrine function and the cellular and molecular mechanisms and pathways linking muscle or adipose tissues with bone anabolism and catabolism is a new avenue for novel pathways for anabolic drug discovery. These in turn will likely lead to more rational therapy toward increasingly prevalent disorders like osteoporosis. In this review, some of the recent works on the interaction of bone with muscle and fat are highlighted, and in so doing the role of parathyroid hormone (PTH), and PTH-related peptide (PTHrP) is surveyed.