Abstract
Microwave breast cancer detection is based on differences in electrical properties between healthy and malignant tissues. Tissue sensing adaptive radar (TSAR) has been proposed as a method of microwave breast imaging for early tumor detection. TSAR senses all tissues in the volume of interest and adapts accordingly. Simulation results have shown the feasibility of this system for detecting tumors of 4 mm in diameter. In this paper, the second-generation experimental system for TSAR is presented. Materials with electrical properties similar to those in the breast are used for the breast model. A resistively loaded Wu–King monopole antenna is fabricated, and reflections from the breast model over the frequency range of 1–10 GHz are recorded. The reflected signals are processed with the TSAR algorithm, which includes improved skin subtraction and TSAR focusing algorithms. Various tumor models are examined; specifically, a 1-cm tumor is detected with a signal-to-clutter ratio of 10.41 dB. Tumor detection with the experimental system is evaluated and compared to simulation results.

This publication has 23 references indexed in Scilit: