Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment

Abstract
We demonstrate a prototype system of polarization-sensitive optical coherence tomography (PS-OCT) designed for clinical studies of the anterior eye segment imaging. The system can measure Jones matrices of the sample with depth-multiplexing of two orthogonal incident polarizations and polarization-sensitive detection. An optical clock is generated using a quadrature modulator and a logical circuit to double the clock frequency. Systematic artifacts in measured Jones matrices are theoretically analyzed and numerically compensated using signals at the surface of the sample. Local retardation images of filtering blebs after trabeculectomy show improved visualization of subconjunctival tissue, sclera, and scar tissue of the bleb wall in the anterior eye segment.