Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine

Abstract
The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003–2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens. Since 1998, genetically and antigenically diverse influenza A viruses have circulated in North American swine due to continuous cross-species transmission and reassortment with avian and human influenza viruses, presenting a pandemic threat to humans. Millions of swine are transported year-round from the southern United States into the corn-rich Midwest, but the importance of these movements in the spatial dissemination and evolution of the influenza virus in swine is unknown. Using a large data set of influenza virus sequences collected in North American swine during 2003–2010, we investigated the spatial dynamics of two influenza viruses of the H1 subtype that were introduced into swine from humans around 2003. Employing recently developed Bayesian phylogeography methods, we find that the spread of this influenza virus follows the large-scale transport of swine from the South to the Midwest. Based on this pattern of viral migration, we suggest that the genetic diversity of swine influenza viruses in the Midwest is continually augmented by the importation of viruses from source populations located in the South. Understanding the importance of long-distance pig movements in the evolution and spatial dissemination of influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens.

This publication has 27 references indexed in Scilit: