On resonant optical excitation and carrier escape in GaInN/GaN quantum wells

Abstract
Recently, photoluminescence studies using resonant optical excitation in GaInN layers have been used to investigate the physical origin of efficiency droop in GaInN/GaN light-emitting diodes. In these studies, it has been assumed that in the case of resonant excitation, where electron-hole pairs are generated in the GaInN layers only, carrier transport effects play no role. We report that in contrast to this assumption, carrier escape from quantum wells does take place and shows strong dependence upon the duration of excitation and bias conditions. We also discuss the time scales required to reach steady-state conditions under pulsed optical excitation.