THE LOCALIZATION OF Mg-Na-K-ACTIVATED ADENOSINE TRIPHOSPHATASE ON RED CELL GHOST MEMBRANES

Abstract
The lead salt method introduced by Wachstein and Meisel (12) for the cytochemical demonstration of ATPase activity was modified and used to determine sites of activity on red cell ghost membranes. Preliminary studies showed that aldehyde fixation and standard concentrations of the capture reagent Pb(NO3)2 resulted in marked inhibition of the ATPase activity of these membranes. By lowering the concentration of Pb2+ and incubating unfixed red cell ghosts, over 50% of the total ATPase activity, which included an ouabain-sensitive, Na-K-activated component, could be demonstrated by quantitative biochemical assay. Cytochemical tests, carried out under the same conditions, gave a reaction product localized exclusively along the inner surfaces of the ghost membranes for both Mg-ATPase and Na-K-ATPase. These findings indicate that the ATPase activity of red cell ghosts results in the release of Pi on the inside of the ghost membrane at sites scattered over its inner aspect. There were no deposits of reaction product on the outer surface of the ghost membrane, hence no indication that upon ATP hydrolysis Pi is released outside the ghosts. Nor was there any clear difference in the localization of reaction product of Mg-ATPase as opposed to that of Na-K-ATPase.

This publication has 25 references indexed in Scilit: