Coherent Manipulation of Electronic States in a Double Quantum Dot

Abstract
We investigate coherent time evolution of charge states (pseudospin qubit) in a semiconductor double quantum dot. This fully tunable qubit is manipulated with a high-speed voltage pulse that controls the energy and decoherence of the system. Coherent oscillations of the qubit are observed for several combinations of many-body ground and excited states of the quantum dots. Possible decoherence mechanisms in the present device are also discussed.