Acteoside protects endothelial cells against free radical-induced oxidative stress

Abstract
The protective effect of acteoside against membrane lipid oxidation and free radical-mediated impairment of endothelial function was investigated. Results showed that iron-mediated oxidative modification of the cell membrane in cultured bovine pulmonary endothelial cells (PAECs) was significantly attenuated by acteoside as measured by thiobarbituric acid-reactive substances (TBARS). Fenton's reagent (H2O2/Fe2+) was used to generate hydroxyl radicals (*OH) and induce oxidative stress. Acteoside not only effectively minimized the loss of cell viability induced by hydroxyl radicals in cultured endothelial cells but also countered the free radical-induced destruction of the endothelium-dependent relaxation to acetylcholine in rat aorta. Furthermore, acteoside showed a dose-dependent scavenging effect of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals and appeared to be the most efficient in comparison with the four reference compounds (α-tocopherol, vitamin C, probucol and resveratrol). These data suggested that acteoside protects the cell from oxidative stress and that scavenging of free radicals could be a key mechanism contributing to the cytoprotective effect of acteoside.