Molecular Interactions of Arabinogalactan Proteins with Cortical Microtubules and F-Actin in Bright Yellow-2 Tobacco Cultured Cells

Abstract
Arabinogalactan proteins (AGPs), a superfamily of plant hydroxyproline-rich glycoproteins, are present at cell surfaces. Although precise functions of AGPs remain elusive, they are widely implicated in plant growth and development. A well-characterized classical tomato (Lycopersicon esculentum) AGP containing a glycosylphosphatidylinositol plasma membrane anchor sequence was used here to elucidate functional roles of AGPs. Transgenic tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells stably expressing green fluorescent protein (GFP)-LeAGP-1 were plasmolysed and used to localize LeAGP-1 on the plasma membrane and in Hechtian strands. Cytoskeleton disruptors and beta-Yariv reagent (which binds and perturbs AGPs) were used to examine the role of LeAGP-1 as a candidate linker protein between the plasma membrane and cytoskeleton. This study used a two-pronged approach. First, BY-2 cells, either wild type or expressing GFP-microtubule (MT)-binding domain, were treated with beta-Yariv reagent, and effects on MTs and F-actin were observed. Second, BY-2 cells expressing GFP-LeAGP-1 were treated with amiprophosmethyl and cytochalasin-D to disrupt MTs and F-actin, and effects on LeAGP-1 localization were observed. beta-Yariv treatment resulted in terminal cell bulging, puncta formation, and depolymerization/disorganization of MTs, indicating a likely role for AGPs in cortical MT organization. beta-Yariv treatment also resulted in the formation of thicker actin filaments, indicating a role for AGPs in actin polymerization. Similarly, amiprophosmethyl and cytochalasin-D treatments resulted in relocalization of LeAGP-1 on Hechtian strands and indicate roles for MTs and F-actin in AGP organization at the cell surface and in Hechtian strands. Collectively, these studies indicate that glycosylphosphatidylinositol-anchored AGPs function to link the plasma membrane to the cytoskeleton.