CsAGP1, a Gibberellin-Responsive Gene from Cucumber Hypocotyls, Encodes a Classical Arabinogalactan Protein and Is Involved in Stem Elongation

Abstract
Fluorescence differential display was used to isolate the gibberellin (GA)-responsive gene, CsAGP1, from cucumber (Cucumis sativus) hypocotyls. A sequence analysis ofCsAGP1 indicated that the gene putatively encodes a “classical” arabinogalactan protein (AGP) in cucumber. Transgenic tobacco (Nicotiana tabacum) plants overexpressingCsAGP1 under the control of the cauliflower mosaic virus 35S promoter produced a Y(βGlc)3-reactive proteoglycan in addition to AGPs present in wild-type tobacco plants. Immuno-dot blotting of the product, using anti-AGP antibodies, showed that the CsAGP1 protein had the AGP epitopes common to AGP families. The transcription level of CsAGP1 in cucumber hypocotyls increased in response not only to GA but also to indole-3-acetic acid. Although CsAGP1 is expressed in most vegetative tissues of cucumber, including the shoot apices and roots, the GA treatment resulted in an increase in the mRNA level of CsAGP1 only in the upper part of the hypocotyls. Y(βGlc)3, which selectively binds AGPs, inhibited the hormone-promoted elongation of cucumber seedling hypocotyls. Transgenic plants ectopically expressingCsAGP1 showed a taller stature and earlier flowering than the wild-type plants. These observations suggest thatCsAGP1 is involved in stem elongation.